Un Mare di Suoni

Giorgio Riccobene INFN-LNS riccobene@Ins.infn.it

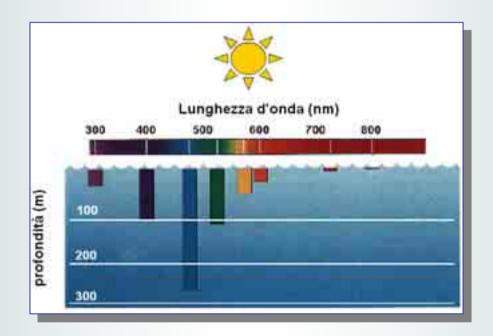
COMUNICARE FISICA.07

La nostra esperienza del suono

L'orecchio umano è fatto per percepire le vibrazioni, cioè i suoni, che si propagano in aria.

Questo sensibilissimo e complicato "strumento" ci permette di ascoltare suoni di frequenza compresa tra 20 Hz e 20 kHz. Il nostro cervello si occupa, poi, di decodificarli ed identificarli in base all'esperienza.

In acqua i suoni si propagano circa 5 volte più velocemente e molto più effcientemente che in aria.


Ma il nostro orecchio e il nostro cervello, non sono adattati a questo ambiente: quando siamo immersi in acqua i suoni ci appaiono perciò più intensi ma molto più "confusi"

Il buio degli abissi

La luce, al contrario, si propaga efficientemente in aria ma non in acqua.

La radiazione solare raggiunge solo gli strati superficiali del mare.

Il mare è quindi un ambiente buio ma ricchissimo di suoni.

Gli animali marini e i loro suoni

I mammiferi marini hanno sviluppato organi in grado di ricevere e trasmettere i suoni in modo efficiente per comunicare, esplorare l'ambiente marino e cacciare.

Foto e suoni di G. Pavan, M Tocchetti, W. Fogato (CIBRA)

Gli animali marini e i loro suoni

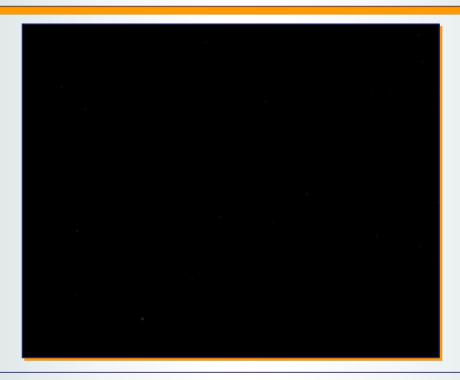
L'ascolto dei suoni dei cetacei è quindi uno strumento fondamentale per studiarli.

Le tecniche più diffuse sono quella di "attaccare" un registratore di suoni all'animale o di stendere antenne di speciali microfoni sottomarini (idrofoni) da bordo di barche silenziose.

L'INFN e il mare: il telescopio sottomarino NEMO

Da alcuni anni i ricercatori dell'INFN hanno iniziato ad esplorare gli abissi marini per studiare l'Universo.

A largo della Sicilia, a 3500 m di profondità l'INFN sta realizzando il telescopio sottomarino **NEMO** che osserverà le scie luminose prodotte dall'interazione in mare dei neutrini, particelle di altissima energia emesse da potenti sorgenti astrofisiche.



abissi marini

NEMO e la ricerca e i suoni del mare

I ricercatori dell'INFN stanno anche conducendo i primi test per "ascoltare" i debolissimi suoni prodotti dalle rare interazioni dei neutrini in mare.

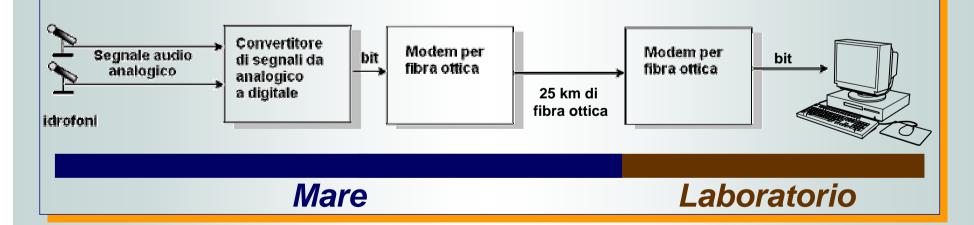
Simulazione L. Thompson (Univ. Sheffield, UK)

Il primo passo in questa direzione è stato la misura del rumore del mare e delle sue variazioni

NEMO-OnDE un laboratorio interdisciplinare

A questo scopo è stata costruita la stazione acustica OnDE (Ocean noise Detection Experiment) che è stata posata a 2000 m di profondità, 25 km a largo di Catania nel Gennaio del 2005

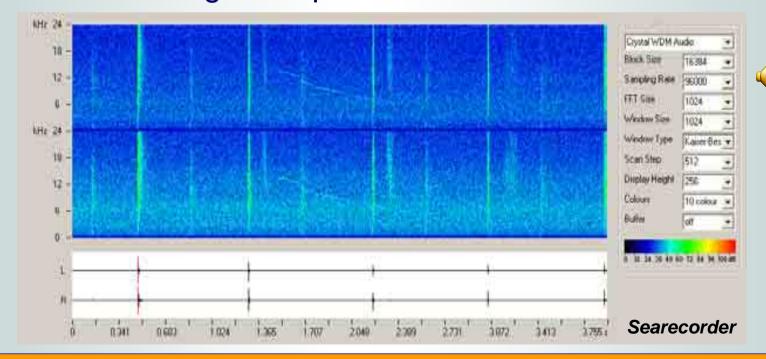
La collaborazione tra i ricercatori di NEMO e i biologi del CIBRA di Pavia ha fatto di OnDE un laboratorio interdisciplinare



Ascolto, trasmissione ed analisi dei suoni

OnDE è un vero e proprio studio di registrazione sottomarino:

è equipaggiata con 4 idrofoni idrofoni i cui segnali vengono digitalizzati sott'acqua e trasmessi a terra 24h/24 attraverso uno speciale cavo sottomarino in fibra ottica lungo 25 km.

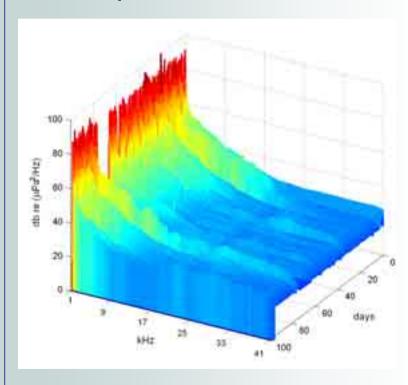

In laboratorio i segnali vengono studiati con sofisticati software di registrazione, "visualizzazione" ed analisi (Searecorder, CIBRA).

NEMO-OnDE: il segnali dei cetacei

Le condizioni di "silenzio" acustico in cui si svolge la misura (dovute alla grande profondità) e la sensibilità raggiunta con gli strumenti utilizzati hanno permesso di ottenere registrazioni di grande qualità, nelle quali ben si identificano i caratteristici segnali sonori ("click") emessi dai capodogli, per localizzare il cibo a grande profondità.

Una bella sorpresa!

I suoni dei delfini sono stati registrati quasi ogni giorno e quelli dei capodogli sono stati registrati con grande frequenza. I ricercatori del CIBRA hanno così evidenziato una presenza stanziale o in transito di capodogli, ritenuti in grave pericolo di estinzione, superiore a quella registrata in tutti i precedenti studi.



E la buona notizia è stata ripresa dai maggiori giornali scientifici (Science, Le Scienze) e quotidani nazionali ed internazionali

Uno strumento di monitoraggio ambientale

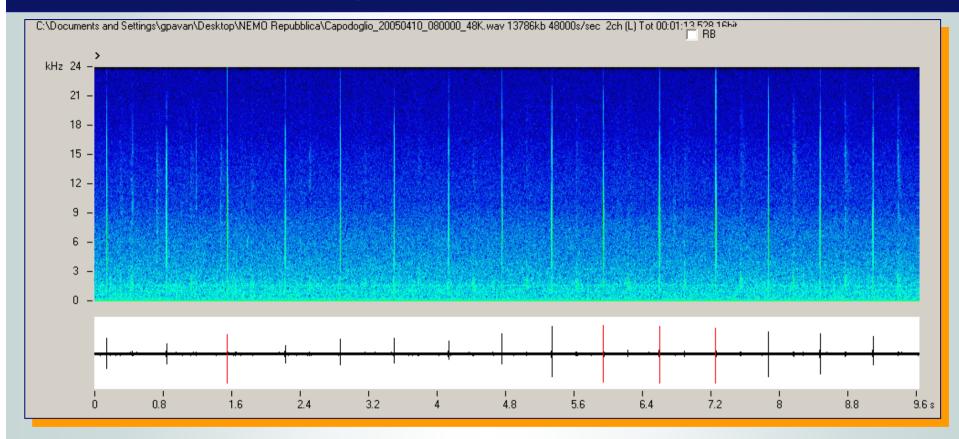
La possibilità di eseguire un monitoraggio continuo del rumore del mare ha permesso inoltre di valutare l'inquinamento "acustico" prodotto dalle grandi navi, dalle attività portuali e dai sonar di grande potenza.

I suoni del mare sul web

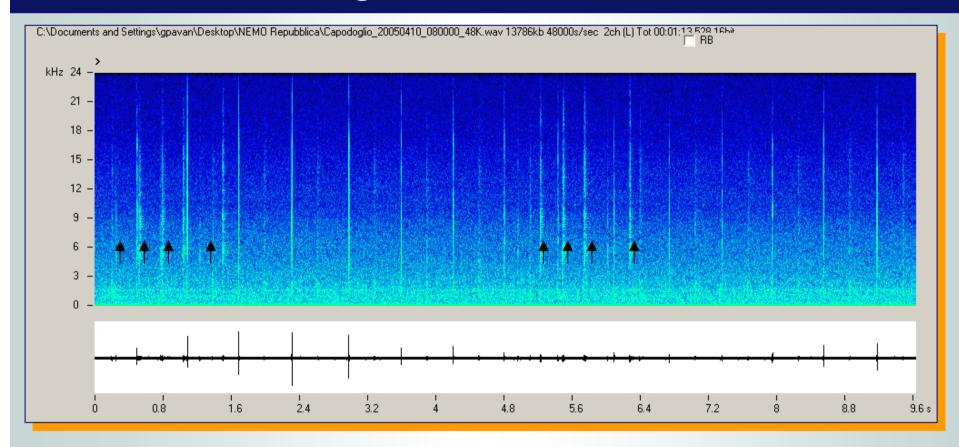
I suoni di OnDE sono già in parte disponibili sui siti web di NEMO e del CIBRA.

http://nemoweb.lns.infn.it http://unipv.it/webcib

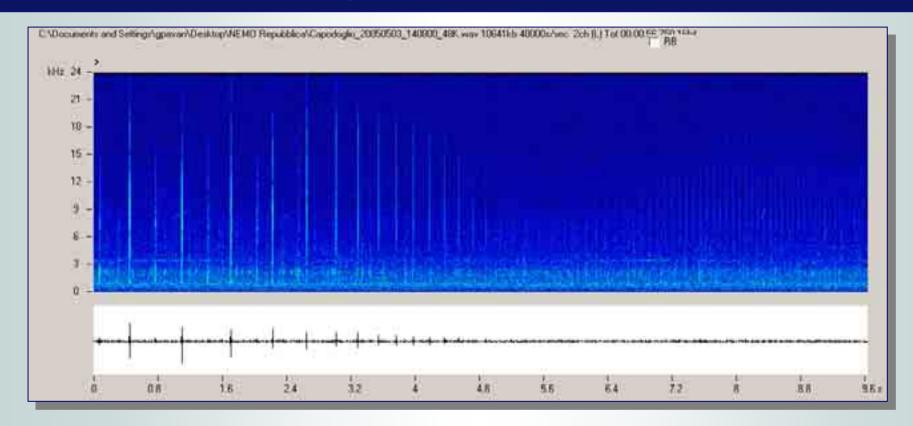
E' possibile ascoltare i suoni con i diffusissimi *media player*, *real player*,... Ma anche visualizzirali ed analizzarli con programmi più sofisticati ma di uso altrettanto semplice come *audacity* (open source).


Altri siti sul web:

www.sonsdemar.eu

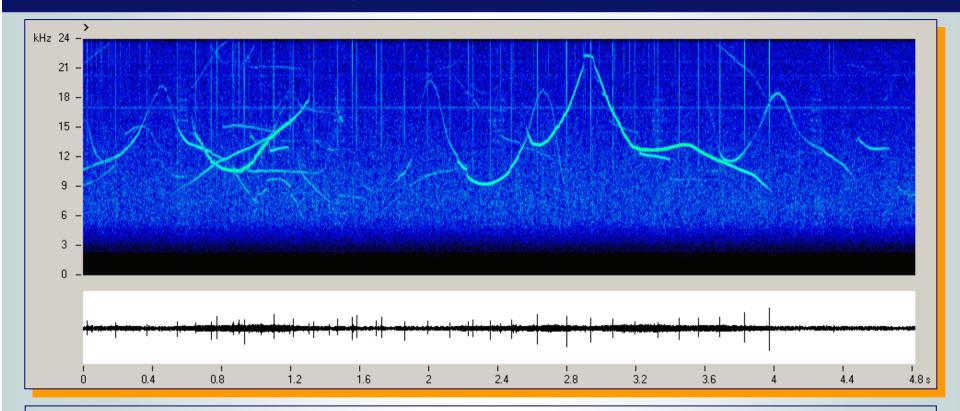

www.underwatersound.uk.com

Serie di clicks di capodoglio in immersione a una profondità presumibile di 800-900 metri. Le registrazioni della stazione OnDE hanno evidenziato per la prima volta un frequente passaggio di capodogli di fronte a Catania.



Clicks di almeno due capodogli. Uno dei due capodogli emette i cosiddetti "codas" costituiti da una serie di 3 clicks seguiti da un quarto click (freccie).

Registrazione del 04/10/2005



Capodoglio: serie di clicks che si risolve in un "creak" che è una accelerazione dell'emissione di clicks per focalizzare una possibile preda (echolocation run).

Reistrazione del 03/10/2005

Fischi (le tracce ondulate) e clicks (le sottili linee verticali) di delfini registrate dalla stazione ONDE.

I suoni dei delfini arrivano molto deboli alla profondità della stazione ricevente ed è necessario filtrare il rumore a bassa frequenza per renderli evidenti

